voltbricks

DATASHEET

Cepuя VDRI **VDRI40, VDRI60**

DC/DC преобразователи для промышленных сфер

Универсальные изолированные импульсные DC/DC преобразователи повышенной надежности с увеличенным ресурсом эксплуатации для использования в аппаратуре промышленного назначения.

Использование герметизирующей заливки обеспечивает надежную защиту от внешних воздействующих факторов и позволяет использовать модули в широких климатических условиях.

Каждая партия изделий проходит проверку на соответствие нескольким десяткам электрических параметров, а также подвергается специальным видам температурных и предельных испытаний.

1.1. Разработаны в соответствии

- Климатическое исполнение, стойкость к ВВФ «02.1»^[1] по ГОСТ 15150
- Контроль стойкости к ВВФ ГОСТ 20.57.406
- Прочность к изоляции, сопротивление изоляции ГОСТ 12997
- Требования к безопасности EN 60950
- Электромагнитная совместимость EN55032 Class B

1.2. Особенности

- Гарантия 3 года
- Форм-фактор 1×2 inch
- Выходной ток до 12 А
- Рабочая температура корпуса -40...+105 °C
- Низкопрофильная 10,2 мм конструкция
- Защита от К3 и перенапряжения
- Дистанционное вкл/выкл
- Пиковый КПД 91 %
- Герметизирующая заливка

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844):278-03-48 Вологда (8172):26-41-59 Воронеж (473):204-51-73 Екатеринбург (343):384-55-89 Иваново (4932):77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Магнитогорск (3519)55-03-13

Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93

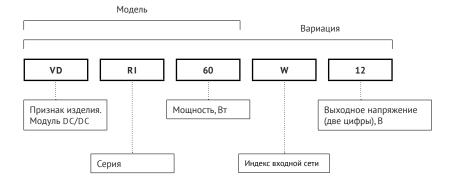
Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64

Пермь (342)205-81-47

Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Сургут (3462)77-98-35


Казахстан (772)734-952-31

2. Содержание

1. Описание	.1
1.1. Разработаны в соответствии	. 1
1.2. Особенности	
1.3. Дополнительная информация	. 1
1.3.1. Описание на сайте производителя	
1.3.2. Отдел продаж	
1.3.3. Техническая поддержка	. 1
1.3.4. Обзор преобразователей на YouTube	. 1
2. Содержание	. 2
3. Условное обозначение модулей	. 2
4. Характеристики преобразователей	. 3
4.1. Общие характеристики	. 3
4.2. Входные характеристики	. 3
4.3. Выходные характеристики	. 3
4.4. Защитные функции	. 4
4.5. Конструктивные параметры	. 4
5. Сервисные функции	. 5
5.1. Топология	. 5
5.2. Схемы включения	. 5
5.2.1. Типовая схема включения	. 5

5.2.2. Схема включения для соответствия стандарту EN55032	
Class A	6
5.2.3. Схема включения для соответствия стандарту EN55032	
Class B	7
5.2.4. Схема включения для соответствия стандарту	
MIL-STD-461F CE102	8
6. Результаты испытаний	9
6.1. Зависимость КПД от нагрузки	9
6.1.1. VDRI60 с индексом входной сети «В»	9
6.1.2. VDRI60 с индексом входной сети «W»	9
6.2. Осциллограммы	10
6.2.1. VDR140B15	10
6.2.2. VDRI40W12	11
6.2.3. VDR160B24	12
6.2.4. VDR160W24	12
6.3. Спектрограммы радиопомех	13
6.3.1. VDR140B15	13
6.3.2. VDRI40W15	14
6.3.3. VDR160B15	15
6.3.4. VDR160W15	16
7 5-5	17

3. Условное обозначение модулей

4. Характеристики преобразователей

Все характеристики приведены для $HKY^{[1]}$, $U_{BX.HOM}$, $I_{BЫX.HOM}$, если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических

4.1. Общие характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Рабочая температура корпуса	Ткорп		-40+105	°C
Рабочая температура окружающей среды	T _{OKP}	При соблюдении температуры корпуса	-40+85	°C
Температура хранения			-50+110	°C
Частота преобразования			360-440	кГц
Прочность изоляции @ 60 с		Вход/выход, вход/корпус, выход/корпус	=1500	В
Сопротивление изоляции @ =500 B		Вход/выход, вход/корпус, выход/корпус	не менее 1	ГОм
Тепловое сопротивление корпуса			12,5	°С/Вт
Дистанционное вкл/выкл			01 В или соединение выводов ВКЛ и – BX, I<2 мА	
MTBF		Т _{КОРП} =75°C, Р=70%	585 000	Ч
Срок гарантии			3	лет

4.2. Входные характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Номинальное входное напряжение	$U_{BX.HOM}$	Индекс «В»	24	В
		Индекс «W»	48	В
Диапазон входного напряжения		U _{BX.HOM} =24 B	936	В
		U _{BX.HOM} =48 B	1875	В
Переходное отклонение U _{BX}		U _{вх.ном} =24 В @ 1 с	840	В
		U _{вх.ном} =48 В @ 1 с	1680	В

4.3. Выходные характеристики

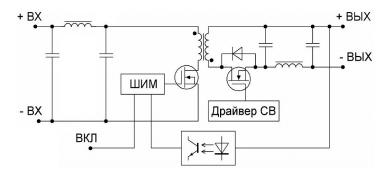
Параметр	Обозначение	Условия	Значение	Размерность
Мощность	Р _{вых}		40; 60	Вт
Типовой коэффициент полезного	кпд	U _{BX} =24 B, U _{BЫX} =12 B	91	%
действия		U _{BX} =48 B, U _{BЫX} =12 B	91	%
Количество выходных каналов			1	
Номинальное выходное напряжение	U _{вых.ном}	P _{BыX} =40 BT	5; 9; 12; 15; 24; 48	В
		P _{BыX} =60 Bt	5; 9; 12; 15; 24; 48	В
Минимальный выходной ток	І _{вых.мин}		0	A
Максимальный выходной ток	I _{BЫХ.МАКС}		12	A
Подстройка выходного напряжения от U _{вых.ном}			мин. ±10	%
Установившееся отклонение выходного напряжения, от $U_{BЫX.HOM}$		U _{BX.НОМ} , I _{BЫХ.МАКС} , НКУ	макс. ±1	%

^[1] Нормальные климатические условия, T_{OKP} =25 °C.

Параметр	Обозначение	Условия	Значение		Размерность
Нестабильность выходного напряжения, от $U_{BЫX.HOM}$		При плавном изменении U _{BX} , в диапазоне установившегося значения	макс. ±0,5		%
		При плавном изменении $I_{B \text{biX}}$, в диапазоне 0,051× $I_{B \text{biX},MAKC}$	макс. ±0,5		%
		Температурная нестабильность	макс. ±2		%
		Временная нестабильность	макс. ±0,5		%
		Суммарная нестабильность во всем диапазоне U_{BX}, I_{BblX} и T_{OKP}	макс. ±4		%
Размах пульсаций (пик-пик) от $U_{BЫX.HOM}$	U _{P-P}		<1		%
Максимальная суммарная ёмкость конденсаторов на выходе модуля	С _{ВЫХ.МАКС}	U _{Bbix} =5 B U _{Bbix} =9 B U _{Bbix} =12 B U _{Bbix} =15 B U _{Bbix} =24 B U _{Bbix} =48 B	12000 4200 2400 1500 600 130 Р _{ВЫХ} =40 Вт	18000 6400 3500 2200 900 210 P _{BbiX} =60 BT	мкФ
Время включения	t _{вкл}	I _{ВЫХ.МАКС} + С _{ВЫХ.МАКС} , U _{ВХ.НОМ}	<0,05		С
Переходное отклонение выходного напряжения от U _{НОМ}		При изменении $U_{\text{BX,HOM}}$ до $1,4 \times U_{\text{BX,HOM}}$; в пределах $(0,751) \times I_{\text{BЫX,MAKC}}$; длительность фронта >100 мкс.	макс. ±5		%

4.4. Защитные функции

Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

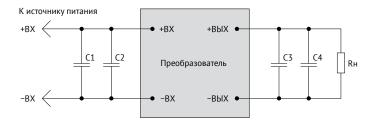

Параметр	Обозначение	Условия	Значение	Размерность
Защита от короткого замыкания			<2 I _{BыX.MAKC}	
Защита от перенапряжения на выходе			<1,3 U _{Bых.ном}	
Синусоидальная вибрация			102000 Гц, 200 (20) м/с² (g), 0,3 мм	
Устойчивость к пыли			есть	
Устойчивость к соляному туману			есть	
Устойчивость к влаге		98% при Т _{ОКР} =35°C	есть	

4.5. Конструктивные параметры

Параметр	Обозначение	Условия	Значение	Размерность
Форм-фактор			1×2 inch	
Материал корпуса			алюминий	
Материал покрытия			Ан. Окс.	-
Материал выводов			бронза	
Macca			макс. 40	Г
Температура пайки		5 c	260	°C
Габаритные размеры		Без учета выводов	макс. 50,8×25,4×10,2	ММ

5. Сервисные функции

5.1. Топология

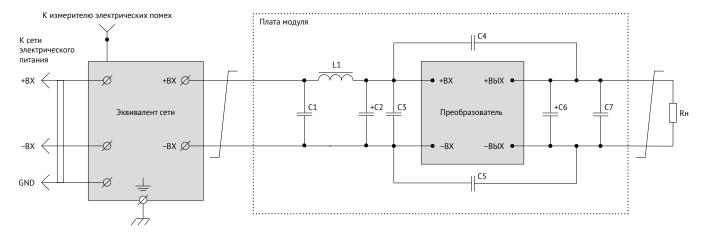


Puc. 1. Топология VDRI40, VDRI60.

5.2. Схемы включения

5.2.1. Типовая схема включения

R_H — нагрузка.



Puc. 2. Схема включения VDR140, VDR160.

Наименование	Тип элемента	Комментарий		Номинал
C1	танталовый конденсатор	Входное напряжение	=24 B =48 B	100 мкФ 47 мкФ
C2	керамический конденсатор		=24 B =48 B	20 мкФ 10 мкФ
C3	керамический конденсатор	Выходное напряжение	от 5 до 15 В вкл. =24 В =48 В	10 мкФ 4,7 мкФ 2,2 мкФ
C4	танталовый конденсатор		=5 В от 9 до 12 В вкл. =15 В от 24 до 48 В вкл.	68 мкФ 47 мкФ 33 мкФ 10 мкФ

Табл. 1. Описание элементов типовой схемы подключения VDR140, VDR160.

5.2.2. Схема включения для соответствия стандарту EN55032 Class A

Puc. 3. Схема включения VDR140, VDR160.

Наименование	Тип элемента	Комментарий		Номинал
C1	керамический конденсатор			4,7 мкФ
C2	танталовый конденсатор	Входное напряжение	=24 B =48 B	100 мкФ 47 мкФ
C3	керамический конденсатор		=24 B =48 B	20 мкФ 10 мкФ
C4, C5	керамический конденсатор			7,5 нФ
C6	танталовый конденсатор	Выходное напряжение	=5 В от 9 до 12 В вкл. =15 В от 24 до 48 В вкл.	68 мкФ 47 мкФ 33 мкФ 10 мкФ
C7	керамический конденсатор		от 5 до 15 В вкл. =24 В =48 В	10 мкФ 4,7 мкФ 2,2 мкФ
L1				не менее 2,2 мкГн

Табл. 2. Описание элементов схемы подключения VDR140, VDR160 для соответствия стандарту EN55032 Class A.

5.2.3. Схема включения для соответствия стандарту EN55032 Class B

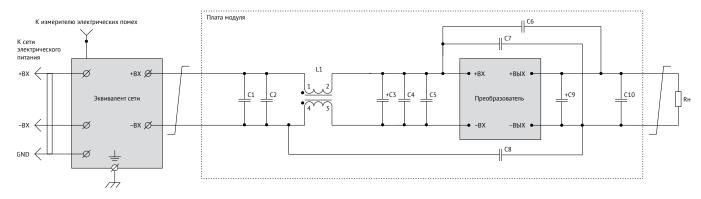
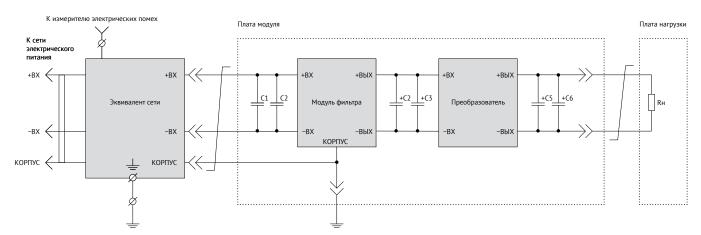



Рис. 4. Схема включения VDR140, VDR160.

Наименование	Тип элемента	Комментарий		Номинал
C1, C2, C4, C5	керамический конденсатор			4,7 мкФ
C3	электролитический конденсатор			100 мкФ
C6, C8	керамический конденсатор			1000 пФ
C7	керамический конденсатор			12 нФ
C9	танталовый конденсатор	Выходное напряжение	=5 B от 9 до 12 В вкл. =15 B от 24 до 48 В вкл.	68 мкФ 47 мкФ 33 мкФ 10 мкФ
C10	керамический конденсатор		от 5 до 15 В вкл. =24 В =48 В	10 мкФ 4,7 мкФ 2,2 мкФ
L1	синфазный дроссель	Входное напряжение	=24 B =48 B	не менее 4,7 мкГн не менее 12 мкГн

Табл. 3. Описание элементов схемы подключения VDR140, VDR160 для соответствия стандарту EN55032 Class B.

5.2.4. Схема включения для соответствия стандарту MIL-STD-461F CE102

Puc. 5. Схема включения VDR140, VDR160.

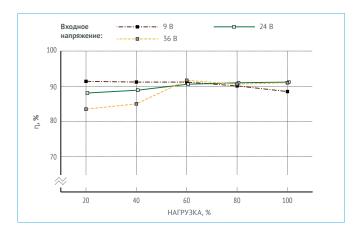
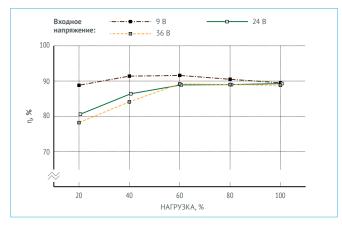

Наименование	Тип элемента	Комментарий		Номинал
C1	танталовый конденсатор	Входное напряжение	=24 B =48 B	100 мкФ 47 мкФ
C2	керамический конденсатор		=24 B =48 B	20 мкФ 10 мкФ
C3	танталовый конденсатор		=24 B =48 B	100 мкФ 47 мкФ
C4	керамический конденсатор		=24 B =48 B	20 мкФ 10 мкФ
C5	танталовый конденсатор	Выходное напряжение	=5 В от 9 до 12 В вкл. =15 В =24 В =48 В	68 мкФ 47 мкФ 33 мкФ 10 мкФ 10 мкФ
C6	керамический конденсатор		от 5 до 15 В вкл. =24 В =48 В	10 мкФ 4,7 мкФ 2.2 мкФ
Модуль фильтраци	и	Входное напряжение	=24 B =48 B	VFD07B VFD07W

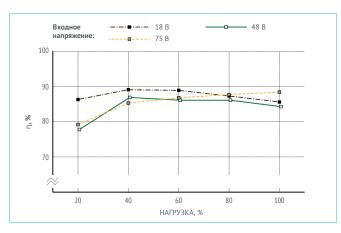
Табл. 4. Описание элементов схемы включения VDRI40, VDRI60 для соответствия стандарту MIL-STD-461F CE102.

6. Результаты испытаний

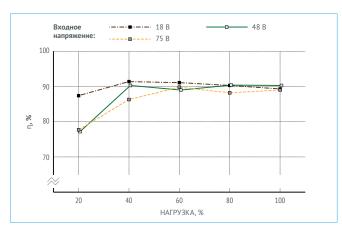
6.1. Зависимость КПД от нагрузки


6.1.1. VDRI60 с индексом входной сети «В»

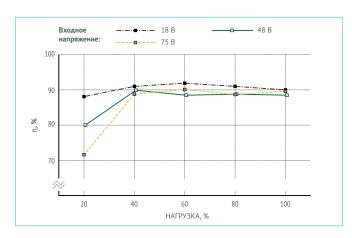
Входное напряжение: 9 В 24 В 100 90 90 80 100 НАГРУЗКА, %


Puc. 6. VDR160B12.

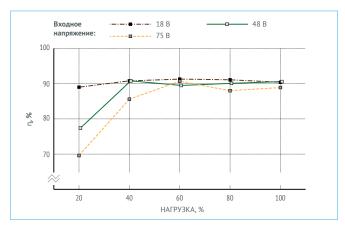
Puc. 8. VDR160B24.



Puc. 7. VDR160B15.


6.1.2. VDR160 с индексом входной сети «W»

Puc. 9. VDR160W05.



Puc. 10. VDR160W09.

Puc. 11. VDR160W12.

Puc. 13. VDR160W24.

Puc. 12. VDR160W15.

6.2. Осциллограммы

6.2.1. VDRI40B15

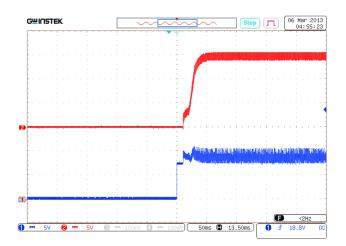


Рис. 14. Установление $U_{BыX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

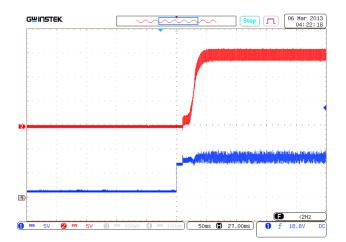
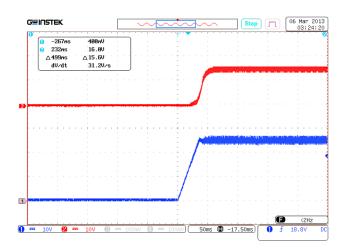



Рис. 15. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (управляющий сигнал).

Puc.~16.~Установление $U_{B I I X.HOM}$ с момента подачи $U_{B X.HOM}$.

Рис. 17. Осциллограмма пульсаций $U_{\it Bыx. HOM}$.

6.2.2. VDRI40W12

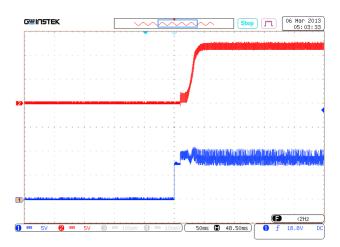


Рис. 18. Установление $U_{BыX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

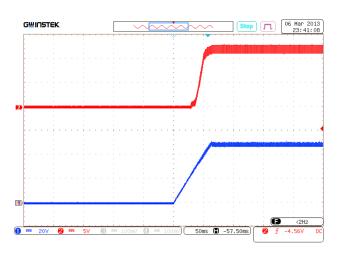


Рис. 20. Установление $U_{Bых. HOM}$ с момента подачи $U_{BX. HOM}$.

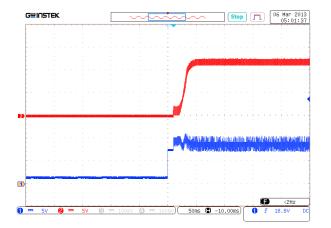


Рис. 19. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (управляющий сигнал).

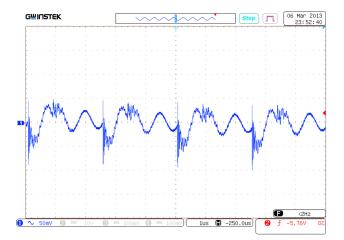


Рис. 21. Осциллограмма пульсаций $U_{Bых.HOM}$.

6.2.3. VDR160B24

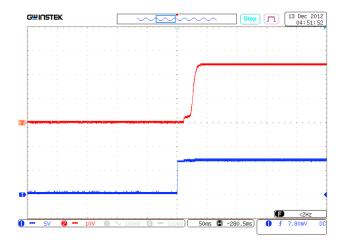


Рис. 22. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-BX»).

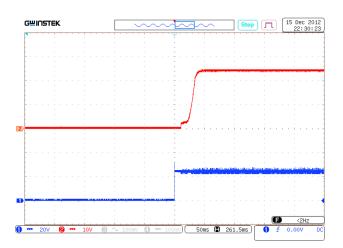


Рис. 24. Установление $U_{BMX.HOM}$ с момента подачи $U_{BX.HOM}$.

Рис. 23. Установление $U_{BblX.HOM}$ с момента подачи ДУ (управляющий сигнал).

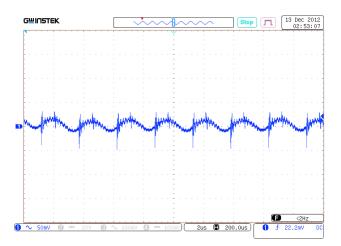


Рис. 25. Осциллограмма пульсаций $U_{BЫX.HOM}$.

6.2.4. VDRI60W24

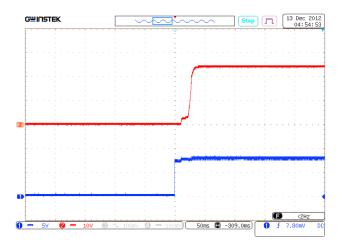


Рис. 26. Установление $U_{BыX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

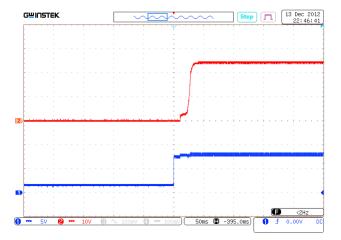


Рис. 27. Установление $U_{B \to X.HOM}$ с момента подачи ДУ (управляющий сигнал).

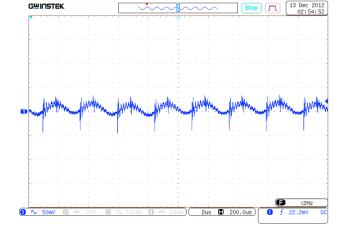
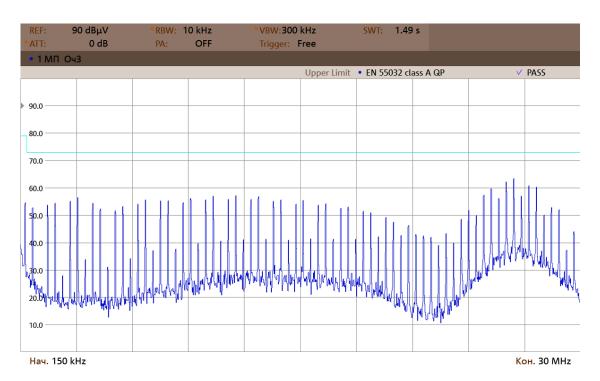
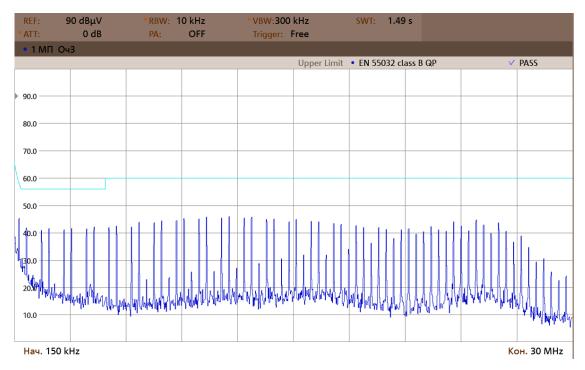



Рис. 28. Установление $U_{BЫX.HOM}$ с момента подачи $U_{BX.HOM}$.


Рис. 29. Осциллограмма пульсаций $U_{BыX.HOM}$.

6.3. Спектрограммы радиопомех

6.3.1. VDRI40B15

Puc. 30. Спектрограмма соответствия EN55032 Class A (0,15–30 MHz).

Puc. 31. Спектрограмма соответствия EN55032 Class В (0,15-30 MHz).

6.3.2. VDRI40W15

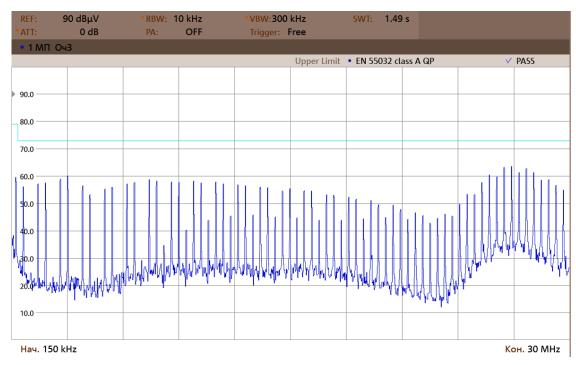
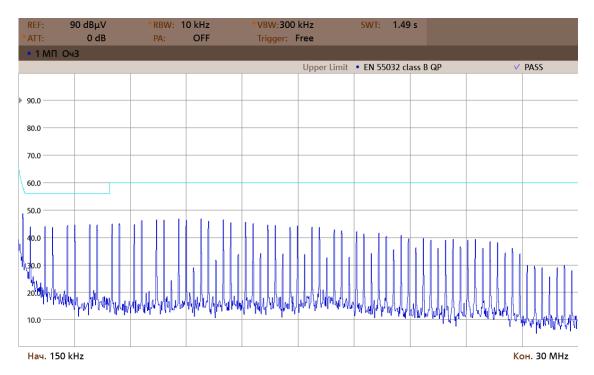



Рис. 32. Спектрограмма соответствия EN55032 Class A (0,15-30 MHz).

Puc. 33. Спектрограмма соответствия EN55032 Class В (0,15-30 MHz).

6.3.3. VDRI60B15

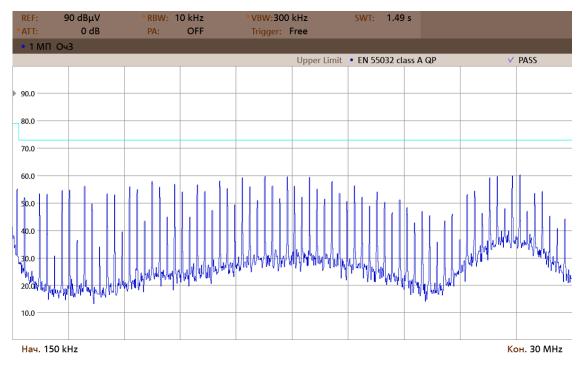
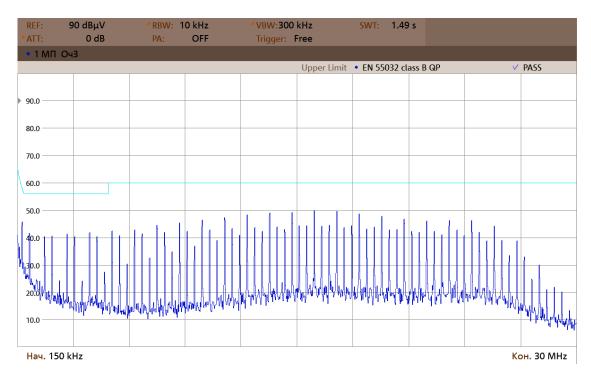
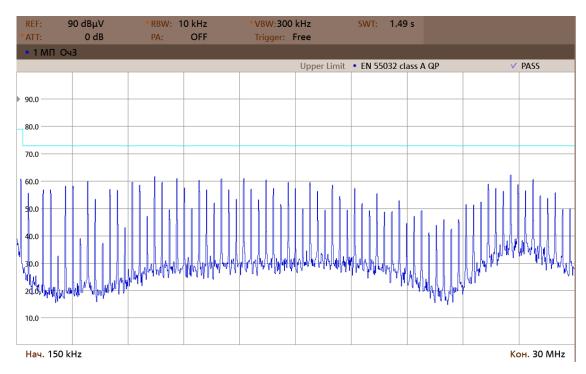
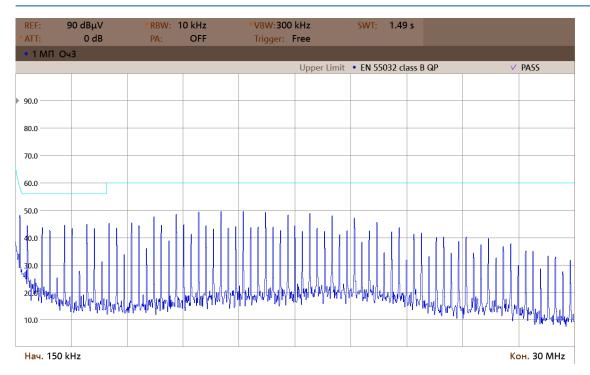
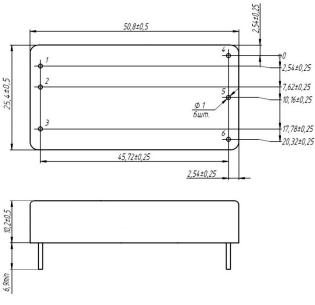




Рис. 34. Спектрограмма соответствия EN55032 Class A (0,15-30 MHz).



Puc. 35. Спектрограмма соответствия EN55032 Class В (0,15-30 MHz).

6.3.4. VDRI60W15


Puc. 36. Спектрограмма соответствия EN55032 Class A (0,15–30 MHz).

Puc. 37. Спектрограмма соответствия EN55032 Class B (0,15-30 MHz).

7. Габаритные схемы

Вывод	1	2	3	4	5	6	
Назначение	+BX	-BX	Дист. вкл/выкл	+ВЫХ	-ВЫХ	РЕГ	

Исполнение VDRI40, VDRI60.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-00 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (384)20-46-81 Новокузнецк (384)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 юмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Россия (495)268-04-70 Казахстан (772)734-952-31